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COMMENT 

On AB percolation on bipartite graphs 

John C Wiermanti 
Mathematical Sciences Department, Johns Hopkins University, Baltimore, MD 21218, USA 

Received 15 December 1987 

Abstract. A method is presented for determining lower bounds for the AB percolation 
critical probability of bipartite graphs. For some graphs, the method shows that AB 
percolation is impossible in an interval containing p = f .  The results improve those of 
Appel and Wierman by removing symmetry and periodicity restrictions, and lend support 
to a conjecture of Halley. 

1. Introduction 

Let the vertices of an infinite graph G be independently labelled A with probability 
p and B with probability 1 - p .  Connect adjacent vertices of G which have opposite 
labels with a bond, while adjacent vertices with the same label are not bonded together. 
This variant of the classical site percolation model was introduced by Mai and Halley 
(1980), as ‘AB percolation’, for the study of gelation processes, and independently by 
Turban (1983) and SevSek et al (1983), as ‘antipercolation’, for the study of antifer- 
romagnetism. The object of study is the probability distribution of the size of clusters 
of vertices which are connected by AB bonds. 

The first step in the study of AB percolation is to determine if it is possible to have 
infinite AB clusters on a specified graph G and, if so, to determine the set of values 
of p for which infinite AB clusters exist. Appel and Wierman (1987) proved that AB 
percolation is impossible on a class of bipartite graphs (including the square and 
hexagonal lattices), partially verifying a conjecture of Halley (1983). Wierman and 
Appel (1987) proved that infinite AB percolation exists on the triangular lattice when 
p E [0.497,0.503], which should be compared with the interval [0.2145,0.7855] obtained 
by Monte Carlo simulation by Mai and Halley (1980). Wierman (1988a) proved that 
the critical probability of AB percolation on the triangular lattice is equal to the site 
percolation critical probability of the triangular lattice with nearest- and next-nearest- 
neighbour bonds. The paper also shows that AB percolation occurs on any graph with 
site percolation critical probability strictly less than f. Wierman (1988b) proved that 
if G is in a class of close-packed graphs, then the AB percolation critical probability 
of G is equal to the site percolation critical probability of a related graph G,. G2 has 
the same vertex set as G, and a pair of vertices are adjacent in G, if they are connected 
by a path of length two in G. For the triangular lattice T, the graph T2 is the same as 
T with both nearest- and next-nearest-neighbour bonds. Wierman (1988b) also 
observes that AB percolation occurs on the triangular lattice when p E [0.3473,0.6527]. 
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This comment focuses on the study of AB percolation on bipartite graphs. It 
provides an alternative to the proof of Appel and Wierman (1987) that AB percolation 
does not exist on certain bipartite graphs. It shows that the symmetry and periodicity 
conditions in the result of Appel and Wierman (1987) are not needed. The method 
here proves that AB percolation cannot occur for an interval of values containing 
on graphs where the site percolation critical probability corresponding to one bipartition 
set is at least 4. In principle, the method provides lower bounds for the AB percolation 
critical probability of bipartite graphs, although some knowledge of classical site 
percolation critical probabilities is necessary for calculation of the bounds. One 
consequence is that the AB percolation critical probability of a bipartite graph G is 
strictly greater than the classical site percolation critical probability of G,, in contrast 
to the equality obtained by Wierman (1988b) for close-packed graphs. 

2. Definitions 

A graph G is bipartite if there exists a partition of its vertex set into two sets ‘, and 
V, such that every edge of G has one endpoint in V, and one endpoint in V2. Note 
that any path on a bipartite graph passes alternately through vertices of V, and V,. 

An edge of G is an AB bond if the endpoints of the edge have different labels. A 
path is an AB path if all its edges are AB bonds. The AB cluster containing a vertex 
U, denoted WtB,  is the set of all vertices which may be reached from U through an 
AB path. The number of vertices in W;” is denoted by I W:”].  

Define the AB percolation probability by 

e;”( p ,  G) = Pp(l Wt”l = +CO). 

Note that AB clusters are unchanged if the label of every vertex is changed, while the 
parameter of the model is changed from p to 1 - p .  Thus 

e tB(  p ,  G) = e:”( 1 - p ,  G) 

for all p E [0, 13, so the AB percolation probability function is symmetric about i. 
While the value of f3tB(p, G) may depend on the vertex U, the set of values p for 

which e:”( p ,  G)  > 0 is independent of the choice of U if G is a connected graph. Thus, 
for a connected graph G and an arbitrary vertex U, we define the AB percolation 
critical probability by 

piB(  G) = inf{ p :  etB(  p ,  G )  > 0). 

Note that, by symmetry, if AB percolation occurs, p i B (  G) c 4. 
If G is bipartite and the labels are reversed on either bipartition set, an AB cluster 

becomes a monochromatic cluster in a multiparameter site percolation model with 
parameters p and 1 - p  corresponding to probabilities that sites are open in the two 
bipartition sets. Thus, AB percolation occurs on G if and only if there exists p E [0, 13 
so that both ( p ,  1 - p )  and (1 - p ,  p )  are in the percolative region of the parameter 
space for the multiparameter model. Although this gives a possible method for 
determining the existence of AB percolation on bipartite graphs, few multiparameter 
models are solved, so little information is gained from this fact. 
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3. Results 

Let G be a bipartite graph with bipartition sets V,  and V 2 .  For each V,, construct a 
graph HI with vertex set V,, such that vertices U and U are adjacent in HI if and only 
if U and U are adjacent to a common vertex in G. We will denote the classical site 
percolation critical probability of HI by p H  ( H , ) ,  If there is an infinite AB path in G, 
then there must be an infinite path of vertices labelled A in one H, and an infinite 
path of vertices labelled B in the other. Then, either p 3 pH ( H , )  and 1 - p  2 pH ( H 2 ) ,  
or p 3 p H ( H 2 )  and 1-p3PH(HI) ,  so we must have pH(H,)+pH(H2)S1.  Thus, AB 
percolation is impossible if the sum of these critical probabilities is greater than one. 
In the case when the sum is equal to one, the impossibility of AB percolation was 
proved when certain symmetry and periodicity conditions hold (see Appel and Wierman 
1987). In the following, we show that no symmetry or periodicity conditions are needed 
when the sum is equal to one. 

For simplicity, we describe the method for a bipartite graph in which all vertices 
of VI have degree a in G and all vertices of V2 have degree b in G. The results 
described below are all valid whenever the maximum vertex degree of G is finite, but 
the expressions become more complicated. 

Let G' denote the graph obtained by inserting a vertex on each edge of G. We 
will essentially replace each vertex U E  V2 by the set of vertices inserted on edges 
incident to U, so we refer to the inserted vertices as parts of U. 

We construct coupled AB percolation configurations on G and G' and a site 
percolation configuration on H ,  as follows. 

(i)  Generate an AB configuration on G+. Give each vertex of H ,  the label A with 
probability p ,  and each part of each vertex of H 2  the label B with probability ( 1  - P ) " ~ ,  
independently. 

(ii) Construct an AB configuration on G. Give each vertex of H1 the label A if it 
is labelled A in G', and B otherwise. Give each vertex of H2 the label B if all its parts 
are labelled B in G', and A otherwise. Each vertex of G has probability p of being 
labelled A, so this is a standard AB percolation model on G. 

(iii) Construct a site percolation model on H , .  Let each vertex of HI be open if 
it is labelled A in G' and at least two of the parts of vertices on incident edges are 
labelled B. 

By construction, each vertex of HI is open with probability 

We can also reverse the roles of the bipartition sets, viewing the inserted vertices 
as parts of vertices of V,. In this case, we obtain a site percolation model in which 
each vertex is open with probability 

p ( l -p)""[l-( l -p) ' /"]b-'  . 
( b )  1 

Suppose p > pAHB( G). Then, with positive probability, there is an infinite AB path 
uo, U,, u 2 , .  . . , in G. In this case, either U,, u 3 ,  u 5 , .  . . , is an infinite A path in H, and 
u 2 ,  u4, 06,. . . , is an infinite B path in H 2 ,  or vice versa. These give rise to open paths 
in the site percolation models on H ,  and H 2 .  Thus, either 
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and 

or 

and 

Note that the second pair of inequalities may be obtained from the first by replacing 
p by 1 - p ,  so we need only consider the first pair and use symmetry of the AB percolation 
probability about f. 

Let p1 denote the minimum solution to the first inequality, and p 2  denote the 
maximum solution to the second inequality. Note that, in each inquality, p or 1 - p  
is multipled by a factor which is strictly smaller than one (when 0 < p  < 1 ) .  Thus, since 
the left sides are continuous functions of p ,  strict inequalities hold for the solutions: 

PI > PH 

and 

1 - p2 > PH ( H2 ). 

From this observation, we obtain theorem 1 .  

Theorem 1 .  If G is bipartite, with bipartition set graphs HI and H2 such that 

PH +pH ( H2) 1 

and the maximum vertex degree of G is finite, then 

et"( p ,  G) = 0 

for all p E [0, 13. 

Note that the result requires no symmetry or periodicity conditions (as in Appel 
and Wierman (1987)) and the result is valid in any dimension. 

The first pair of inequalities requires that p > p1 > p H (  HI), while the second set 
requires that p > p 2  > p H  ( H 2 ) .  Since at least one pair of inequalities must be satisfied, 
AB percolation cannot occur unless p 2 min{ p l ,  p 2 }  > min{ p H  ( HI), pH ( H2)}. We may 
use this fact to compute lower bounds for the AB percolation critical probability, as 
illustrated in the example below. Since, for a bipartite graph, the site percolation 
critical probability of the graph H2 is the minimum appearing on the right of this 
inequality, we have theorem 2. 

Theorem 2. If G is bipartite and has finite maximum vertex degree, then 

PAH"(G) > P H  (G2)* 
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Note further that the first pair of inequalities can be satisfied only if p 3 p I  > p H (  H,) 
and the second pair can be satisfied only if 1 - p  3 1 -pl > p H ( H I ) .  Since at least one 
pair must be satisfied to have AB percolation, when p H ( H I )  > 4 infinite AB percolation 
clusters cannot occur in the interval ( 1  - p l , p l ) ,  which contains 5 (and similarly, if 
p H ( H 2 ) > f ) .  This behaviour holds for the following example and the dice lattice, 
which both have the triangular lattice as one of the corresponding graphs Hi. 

To illustrate the computations and phenomena discussed above, we present one 
example. Consider the triangular lattice with an additional vertex inserted at the 
midpoint of each edge. This graph is bipartite, with the bipartition sets being the 
vertices of the triangular lattice and the set of inserted vertices. Furthermore, the 
resulting graphs H I  and H2 are the triangular lattice and the matching lattice of the 
KagomC lattice, for which the site percolation critical probabilities are both known 
exactly. In this case, one set of inequalities becomes 

p (  1 - P ) ” ~  3 0.3473 

and 

which are both satisfied when p E (0.4153, 0.4948). Thus, the AB percolation critical 
probability is at least 0.4153 and AB percolation is impossible in the interval (0.4948, 
0.5052). However, we cannot show that AB percolation is impossible on this graph, 
which would be implied by Halley’s (1983) conjecture. 
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